Best Piecewise Monotone Uniform Approximation

VASANT A. UBHAYA

Department of Computer Science and Operations Research, Division of Mathematical Sciences, 300 Minard Hall, North Dakota State University, Fargo, North Dakota 58105

AND

S. E. WEINSTEIN AND YUESHENG XU*

Department of Mathematics and Statistics, Old Dominion University, Norfolk, Virginia 23529

Communicated by Frank Deutsch

Received February 13, 1989; revised April 16, 1990

The problem considered is that of finding a best uniform approximation to a real function $f \in C[a, b]$ from the class of piecewise monotone functions. The existence, characterization, and nonuniqueness of best approximations are established. (1990) Academic Press, Inc.

1. INTRODUCTION

Let I = [a, b] be a compact real interval and B = B(I) (resp. C = C(I)) be the Banach space of all bounded (resp. continuous) real functions f on I with the uniform norm $||f|| = \sup\{|f(x)| : x \in I\}$. For any integer $n \ge 1$, let

$$\Omega = \{ p = (p_0, p_1, ..., p_n) \in \mathbb{R}^{n+1} : a = p_0 \leq p_1 \leq \cdots \leq p_n = b \}.$$

Then, Ω is compact in \mathbb{R}^{n+1} . Given a $p \in \Omega$, define intervals $I_j = [p_{j-1}, p_j)$, for $1 \leq j \leq n-1$, and $I_n = [p_{n-1}, p_n]$. Let

 $K(p) = \{h \in B: (-1)^{j}h \text{ is nonincreasing on } I_{i}, 1 \leq j \leq n\}.$

K(p) is called the set of all *n*-piecewise monotone functions with the knot vector *p*. Some functions in K(p) have more than one knot vector. In general, the set of all knot vectors for a given function in K(p) is a convex subset of Ω , as may be easily seen. Next, let $K = \bigcup \{K(p) : p \in \Omega\}$. We call

* Current address: Department of Mathematics, North Dakota State University, Fargo, North Dakota 58105.

Copyright © 1990 by Academic Press, Inc. All rights of reproduction in any form reserved. K the set of *n*-piecewise monotone functions, or simply, the set of piecewise monotone functions. We point out that several entities defined in this article including K(p) and K depend on n although such dependence is suppressed in their notation. Given f in C, a function g in $E \subset B$ is called a best approximation to f from E if $||f - g|| = \inf\{||f - h|| : h \in E\}$. In this article, we consider the problem of finding a best approximation to f in C from $K(p), K, K(p) \cap C$, and $K \cap C$.

In Section 2, we analyze some properties of K(p) and K, and establish the existence and characterization of a best approximation to f in C from these sets. In Section 3, we demonstrate the existence and nonuniqueness of best approximations from $K(p) \cap C$ and $K \cap C$. The latter obviously implies the nonuniqueness of best approximations from K(p) and K.

If n = 1, the above problem is included in the best uniform monotone approximation investigated in [8]. If n = 2, the problem is a slightly restricted version of the best uniform quasi-convex approximation studied in [10, 11, 13]. Quasi-convex functions are considered in [2, 3, 5]. A slightly general concept of piecewise monotone functions is used in [12] to establish the existence of a best L_p approximation from various function classes including quasi-convex, convex, *n*-convex, and star-shaped. Additional references on piecewise monotone functions are [1, 6, 7].

2. Best Approximation from K(p) and K

In this section we establish some properties of K(p) and K, and also the existence and characterization of best approximations from these sets.

Let $f \in B$. For $E \subset B$, let $\rho(f, E) = \inf\{\|f - h\|: h \in E\}$. Define $\Delta(p) = \rho(f, K(p)), p \in \Omega$, and $\Delta^* = \rho(f, K)$. Then, $\Delta^* = \inf\{\Delta(p): p \in \Omega\}$. We denote by $K^*(p)$ (resp. K^*) the set of all best approximations to f from K(p) (resp. K). Let also $P^* = \{p \in \Omega: \Delta(p) = \Delta^*\}$. We call P^* the set of best knot vectors for piecewise monotone approximation to f; this terminology is justified by Theorem 2.3(b) below. The left-hand and right-hand limits of h at x are denoted by $h(x^-)$ and $h(x^+)$, respectively.

THEOREM 2.1 (Existence of a best approximation from K and a best knot vector). If $f \in C$, then there exist $p^* \in P^*$ and $g^* \in K(p^*) \cap K^*$. Thus $P^* \neq \emptyset$.

Proof (As in [9] or [12]). Let T(h) denote the total variation of a function h on I. If $h \in K$, then there exists $q \in \Omega$ such that $h \in K(q)$. We have,

$$T(h) = \sum_{i=1}^{n} |h(q_i^{-}) - h(q_{i-1})| + \sum_{i=1}^{n} |h(q_i^{-}) - h(q_i)| \leq 4n ||h||.$$

Now for each positive integer k, there exists $h_k \in K$ such that $||f - h_k|| \leq \Delta^* + 1/k$. Hence, $||h_k|| \leq ||f|| + \Delta^* + 1$. Then $h_k \in K(q^{(k)})$ and, by the above result, $T(h_k) \leq 4n ||h_k|| \leq 4n (||f|| + \Delta^* + 1)$. By the compactness of Ω and Helly's selection theorem [4, p. 222], there exist subsequences $p^{(k)}$ and g_k of $q^{(k)}$ and h_k , respectively, so that $p^{(k)} \to p^*$ and $g_k \to g^*$ pointwise. Then $||f - g^*|| \leq \Delta^*$. Clearly, g^* may not be in $K(p^*)$. We redefine g^* at the points p_i^* , $1 \leq i \leq n-1$, to equal its right-hand limits at these points. Then, $g^* \in K(p^*)$ and, by the continuity of f we have $||f - g^*|| = \Delta^*$. Thus $g^* \in K^*$. Also, $\Delta^* = \Delta(p^*)$ and $p^* \in P^*$. The proof is complete.

We now establish some properties of K(p) and K. A subset E of B is called a cone if $f \in E$ implies that $\lambda f \in E$ for all $\lambda \ge 0$. It is easy to show that a cone E is convex if and only if $f + h \in E$ whenever $f, h \in E$. Note that if n = 1, then $\Omega = \{p\}$ and K = K(p), where p = (a, b). In the next proposition, the topology under consideration is the one generated by the uniform norm.

PROPOSITION 2.1. (a) For all $p \in \Omega$ and $n \ge 1$, K(p) and $K(p) \cap C$ are closed convex cones.

(b) For n = 1, K and $K \cap C$ are closed convex cones. For $n \ge 2$, K and $K \cap C$ are cones which are not convex, K is not closed, but $K \cap C$ is closed.

Proof. We first show that $K \cap C$ is closed. Let $h_k \in K \cap C$ and $h \in B$ with $||h-h_k|| \to 0$ as $k \to \infty$. Then, by uniform convergence, $h \in C$. As in Theorem 2.1, there exists a subsequence g_k of h_k with $g_k \in K(p^{(k)})$ so that $g_k \to g^*$ pointwise and $p^{(k)} \to p^*$. Then $h = g^*$ and, by continuity, $h \in K(p^*)$. Hence $h \in K \cap C$ and $K \cap C$ is closed.

We now show that K is not closed for $n \ge 2$; it suffices to do so for n = 2. Let n = 2, I = [-1, 1], f(x) = 0 for $-1 \le x \le 0$, and = 1 - x for $0 < x \le 1$. Clearly, $f \in B \setminus K$. Let $q^{(k)} = (-1, 1/k, 1)$, $k \ge 2$. Define $f_k(x) = 0$ for $-1 \le x \le 0$, = 1 for 0 < x < 1/k, and = 1 - x for $1/k \le x \le 1$. Then $f_k \in K(q^{(k)}) \subset K$, and $||f - f_k|| = 1/k \to 0$ as $k \to \infty$. Hence f is in the closure of K. Thus K is not closed.

The remaining assertions may be established directly from the definitions by elementary methods. The proof is complete.

We note that the cone of quasi-convex functions considered in [10, 11, 13] is closed and contains the cone K for n = 2, and the latter is not closed as shown above.

Let $f \in B$. If $a \leq x \leq y \leq b$ and $1 \leq k \leq n$, define

$$F_k(x, y) = (f(x) - f(y))/2,$$
 k odd,
= $(f(y) - f(x))/2,$ k even.

For any interval $J \subset I$, let $d_k(J) = \sup\{F_k(x, y): x, y \in J, x \leq y\}$. Note that, when k is odd (resp. even), $d_k(J)$ is a measure of the extent by which f fails to be nondecreasing (resp. nonincreasing) on J. For $p \in \Omega$, let $\delta(p) = \max\{d_k(I_k): 1 \leq k \leq n\}$. Let also $\delta^* = \inf\{\delta(p): p \in \Omega\}$ and $P = \{p \in \Omega:$ $\delta(p) = \delta^*\}$, the subset of Ω on which δ attains its minimum.

PROPOSITION 2.2. Let $f \in B$.

- (a) $\delta(p) = 0$ for some $p \in \Omega$ if and only if $f \in K(p)$.
- (b) If $f \in K$ then $\delta^* = 0$.

(c) If $f \in C$ then $\delta(p)$ is a continuous function of $p \in \Omega$. Hence, $\delta^* = 0$ if and only if $f \in K \cap C$.

Proof. (a) This follows directly from the definition of K(p).

(b) If $f \in K$ then $f \in K(p)$ for some $P \in \Omega$ and $\delta(p) = 0$. Hence $\delta^* = 0$.

(c) For $p \in \Omega$, let ||p|| denote the Euclidean norm. Let $\varepsilon > 0$. Since $f \in C$, there exists $\rho > 0$ such that $|f(x) - f(y)| < \varepsilon$ whenever $|x - y| < \rho$. Let $p, q \in \Omega$ with $||p - q|| < \rho$. Then $|p_k - q_k| < \rho$ for all $0 \le k \le n$. Hence, if $I_k = [p_{k-1}, p_k)$ and $J_k = [q_{k-1}, q_k)$, then we have $|d_k(I_k) - d_k(J_k)| \le \varepsilon$, as may be easily shown. Hence, $|\delta(p) - \delta(q)| \le \varepsilon$ and δ is continuous. Now, if $\delta^* = 0$ then there exists p with $\delta^* = \delta(p) = 0$. Then $f \in K(p) \subset K$. The proof is complete.

The example of Proposition 2.1 also illustrates that, in general, the continuity condition of f in Theorem 2.1 cannot be dropped and the converse of Proposition 2.2(b) is not true. For f defined in the proof of Proposition 2.1, $\Delta^* = 0$ and a best approximation from K does not exist. Also, $\delta(q^{(k)}) \to 0$ as $k \to \infty$. Hence $\delta^* = 0$ but $f \in B \setminus K$.

For $p \in \Omega_n$ and $1 \leq j \leq n$, define g_p , \overline{g}_p in K by

$$\underline{g}_p(x) = \sup\{f(y): p_{j-1} \le y \le x\} - \delta(p), x \in I_j, \quad j \text{ odd}$$
$$= \sup\{f(y): x \le y \le p_j\} - \delta(p), x \in I_j, \quad j \text{ even},$$

and

$$\bar{g}_p(x) = \inf\{f(y): x \leqslant y \leqslant p_j\} + \delta(p), x \in I_j, \qquad j \text{ odd,}$$
$$= \inf\{f(y): p_{j-1} \leqslant y \leqslant x\} + \delta(p), x \in I_j, \qquad j \text{ even.}$$

THEOREM 2.2 (Best Approximation from K(p)). Let $p \in \Omega$, $f \in B$ and $g \in K(p)$. Then the following holds.

(a) (Duality) $\Delta(p) = \delta(p)$.

(b) (Existence and characterization) Both \underline{g}_p , $\overline{g}_p \in K^*(p)$ with $\underline{g}_p \leq \overline{g}_p$. Furthermore, $g \in K^*(p)$ if and only if $g_p \leq g \leq \overline{g}_p$. **Proof.** Applying [8, part I, Theorem 2.1] with w identically equal to 1 to each interval I_j we obtain the required results. The arguments given there hold even if some of the intervals are half-open. The maximum of θ 's for all intervals gives $\delta(p)$. The proof is complete.

THEOREM 2.3 (Best Approximation from K). Let $f \in C$ and $g \in K$. Then the following holds.

(a) (Duality) $\Delta^* = \delta^*$.

(b) (Optimal knots) $P^* = P = \{ p \in \Omega : K(p) \cap K^* \neq \emptyset \} \neq \emptyset$.

(c) (Characterization) $g \in K^*$ if and only if there exists a $p \in P$ such that $g_p \leq g \leq \overline{g}_p$. (Both g_p and \overline{g}_p are in K^* .) Consequently, $K^* = \bigcup \{ [g_p, \overline{g}_p] : p \in P \}$, where $[g, \overline{g}_p]$ denotes the "function interval" $\{ g \in K : g_p \leq g \leq \overline{g}_p \}$.

Proof. (a) and (b) By Theorem 2.2(a), for each $p \in \Omega$, $\Delta(p) = \delta(p)$. Hence, $\Delta^* = \delta^*$ and $P^* = P$. There latter is nonempty by Theorem 2.1. Now, by the definition of P^* , we have $P^* \supset \{p \in \Omega : K(p) \cap K^* \neq \emptyset\}$. If $p \in P^*$, then, by Theorem 2.2(b), there exists a best approximation g to f from K(p) with $||f - g|| = \Delta(p) = \Delta^*$. Hence, $g \in K^*$ and (b) is established.

(c) Note that $g \in K^*$ if and only if $g \in K^*(p)$, where $p \in P^* = P$. The result now follows from Theorem 2.2(b).

The proof is complete.

3. Best Approximation from $K(p) \cap C$ and $K \cap C$

In this section we obtain the existence, characterization, and nonuniqueness of best approximations from $K(p) \cap C$ and $K \cap C$.

We first define some notation. Let $f \in C$. For $0 \le x \le y \le 1$, let $m(x, y) = \min\{f(z): x \le z \le y\}$ and $M(x, y) = \max\{f(z): x \le z \le y\}$. By the continuity of f, for any (open, half-open, or closed) nonempty subinterval J of I with endpoints x, y, we have $d_k(J) = d_k([x, y])$, for all $1 \le k \le n$. For convenience, in the rest of the exposition, we denote $d_k([x, y])$ by $d_k(x, y)$. We now establish two basic results.

LEMMA 3.1. Let $f \in C$, $p \in P$, and k be a fixed integer with $1 \le k \le n-1$.

(a) Let $p_k^{(1)} \in [p_{k-1}, p_{k+1}]$ such that $f(p_k^{(1)}) = M(p_{k-1}, p_{k+1})$ for odd k, and $f(p_k^{(1)}) = m(p_{k-1}, p_{k+1})$ for even k. Then, $d_k(p_{k-1}, p_k^{(1)}) \leq \delta^*$ and $d_{k+1}(p_k^{(1)}, p_{k+1}) \leq \delta^*$.

(b) Let $p_k^{(1)} \in [p_k, p_{k+1}]$ such that the following (i) and (ii) hold.

(i) for odd k, $f(p_k^{(1)}) = M(p_{k-1}, p_{k+1}), m(p_k, p_k^{(1)}) < f(p_{k-1}) = m(p_{k-2}, p_k), and p_{k-1}^{(1)} = \inf\{z \in [p_k, p_k^{(1)}]: f(z) = m(p_k, p_k^{(1)})\},$ (ii) for even k, $f(p_k^{(1)}) = m(p_{k-1}, p_{k+1}), m(p_k, p_k^{(1)}) < f(p_{k-1}) = M(p_{k-2}, p_k), and p_{k-1}^{(1)} = \inf\{z \in [p_k, p_k^{(1)}]: f(z) = M(p_k, p_k^{(1)})\}.$ Then, $d_k(p_{k-1}^{(1)}, p_k^{(1)}) \le \delta^*$ and $d_{k-1}(p_{k-2}, p_{k-1}^{(1)}) \le \delta^*.$

Proof. (a) We present only the proof for odd k. If $p_k^{(1)} = p_k$, then the result holds by the definition of d_k . If $p_k^{(1)} < p_k$, then $d_k(p_{k-1}, p_k^{(1)}) \leq d_k(p_{k-1}, p_k) \leq \delta^*$. Assume $d_{k+1}(p_k^{(1)}, p_{k+1}) > \delta^*$. Then, there exist two points x < y in $[p_k^{(1)}, p_{k+1}]$ such that $f(y) - f(x) > 2\delta^*$. If $p_k^{(1)} \leq x \leq p_k$, then we have,

$$d_k(p_{k-1}, p_k) \ge (f(p_k^{(1)}) - f(x))/2 \ge (f(y) - f(x))/2 > \delta^*,$$

which is a contradiction. Similarly, if $p_k < x \le p_{k+1}$, then $d_{k+1}(p_k, p_{k+1}) \ge (f(y) - f(x))/2 > \delta^*$, a contradiction. The case $p_k^{(1)} > p_k$ can be handled similarly to obtain a contradiction.

(b) We prove this result only for odd k. Since $p_{k-1}^{(1)} \in [p_k, p_k^{(1)}]$, by (a),

$$d_k(p_{k-1}^{(1)}, p_k^{(1)}) \leq d_k(p_{k-1}, p_k^{(1)}) \leq \delta^*.$$

Also,

$$d_{k-1}(p_{k-2}, p_{k-1}^{(1)}) \\ \leq \max\{d_{k-1}(p_{k-2}, p_{k-1}), d_{k-1}(p_{k-1}, p_{k-1}^{(1)}), \\ \sup\{(f(y) - f(x))/2; p_{k-2} \leq x \leq p_{k-1}, p_{k-1} \leq y \leq p_{k-1}^{(1)}\}\}.$$

But

$$d_{k-1}(p_{k-1}, p_{k-1}^{(1)}) \leq (M(p_{k-1}, p_{k-1}^{(1)}) - f(p_{k-1}^{(1)}))/2$$

$$\leq (f(p_k^{(1)}) - f(p_{k-1}^{(1)}))/2 \leq d_{k-1}(p_k, p_{k+1}) \leq \delta^*,$$

and

$$\sup\{(f(y) - f(x))/2: p_{k-2} \le x \le p_{k-1}, p_{k-1} \le y \le p_{k-1}^{(1)}\} \\ \le (M(p_{k-1}, p_{k-1}^{(1)}) - f(p_{k-1}))/2 \le (M(p_{k-1}, p_{k-1}^{(1)}) - f(p_{k-1}^{(1)}))/2 \le \delta^*,$$

as shown above. Hence, $d_{k-1}(p_{k-2}, p_{k-1}^{(1)}) \leq \delta^*$. The proof is complete.

Define subsets Q and Q^* of Ω by

$$Q = \{ p \in \Omega: M(p_{i-1}, p_i) = M(p_i, p_{i+1}), \quad i \text{ odd, and} \\ m(p_{i-1}, p_i) = m(p_i, p_{i+1}), \quad i \text{ even, where } 1 \le i \le n-1 \}, \\ Q^* = \{ p \in \Omega: f(p_i) = M(p_{i-1}, p_{i+1}), \quad i \text{ odd, and} \\ f(p_i) = m(p_{i-1}, p_{i+1}), \quad i \text{ even, where } 1 \le i \le n-1 \}. \end{cases}$$

Clearly, $Q^* \subset Q$. We call Q^* the set of alternant local extremal points of f. These sets play an important role in the analysis. The proof of the following proposition provides an iterative procedure for constructing a best knot vector in Q^* from a given initial best knot vector.

PROPOSITION 3.1. Let $f \in C$. Then $P^* \cap Q^* \neq \emptyset$, and consequently, $Q \supset Q^* \neq \emptyset$.

Proof. By Theorem 2.2 (b), $P^* = P \neq \emptyset$. Let $p \in P$. Also, let k be the smallest index such that $f(p_k)$ does not assume, on $[p_{k-1}, p_{k+1}]$, its local maximum for odd k or local minimum for even k, where $1 \le k \le n-1$. We first consider the case when k is odd. Find $p_k^{(1)} \in [p_{k-1}, p_{k+1}]$ such that $f(p_k^{(1)}) = M(p_{k-1}, p_{k+1})$ and replace p_k by $p_k^{(1)}$. If k = 1 then let $p_0^{(1)} = p_0$. Now suppose that $k \ge 3$. If $f(p_{k-1}) = m(p_{k-2}, p_k^{(1)})$, then let $p_i^{(1)} = p_i$, i = 0, 1, ..., k-1. Otherwise we deduce $p_k < p_k^{(1)}$ and $m(p_k, p_k^{(1)}) < f(p_{k-1})$. Let

$$p_{k-1}^{(1)} = \inf\{z \in [p_k, p_k^{(1)}]: f(z) = m(p_k, p_k^{(1)})\},\$$

and replace p_{k-1} by $p_{k-1}^{(1)}$. By Lemma 3.1, we have $d_{k-1}(p_{k-2}, p_{k-1}^{(1)}) \leq \delta^*$, $d_k(p_{k-1}^{(1)}, p_k^{(1)}) \leq \delta^*$, and $d_{k+1}(p_k^{(1)}, p_{k+1}) \leq \delta^*$. Also, we have $f(p_{k-1}^{(1)}) = m(p_{k-2}, p_k^{(1)})$ and $f(p_k^{(1)}) = M(p_{k-1}^{(1)}, p_{k+1})$. If $f(p_{k-2}) = M(p_{k-3}, p_{k-1}^{(1)})$, then let $p_i^{(1)} = p_i$, i = 0, 1, ..., k-2. Otherwise we deduce that $p_{k-1} < p_{k-1}^{(1)}$ and $M(p_{k-1}, p_{k-1}^{(1)}) > f(p_{k-2})$, and let

$$p_{k-2}^{(1)} = \inf\{z \in [p_{k-1}, p_{k-1}^{(1)}]: f(z) = M(p_{k-1}, p_{k-1}^{(1)})\}.$$

Replace p_{k-2} by $p_{k-2}^{(1)}$. Thus, $d_{k-2}(p_{k-3}, p_{k-2}^{(1)}) \leq \delta^*$, $d_{k-1}(p_{k-2}^{(1)}, p_{k-1}^{(1)}) \leq \delta^*$, $d_{k-1}(p_{k-2}^{(1)}, p_{k-1}^{(1)}) \leq \delta^*$, and $d_{k+1}(p_k^{(1)}, p_{k+1}) \leq \delta^*$, with $f(p_{k-2}^{(1)}) = M(p_{k-3}, p_{k-1}^{(1)})$, $f(p_{k-1}^{(1)}) = m(p_{k-2}^{(1)}, p_k^{(1)})$, and $f(p_k^{(1)}) = M(p_{k-1}^{(1)}, p_{k+1})$. By repeating this procedure, we obtain $p_{k-3}^{(1)}$, ..., $p_2^{(1)}$, $p_1^{(1)}$ such that

(a) $(p_0^{(1)}, p_1^{(1)}, ..., p_k^{(1)}, p_{k+1}, ..., p_n) \in P$, with $p_0^{(1)} = p_0$,

(b) $f(p_i^{(1)}) = M(p_{i-1}^{(1)}, p_{i+1}^{(1)}), i = 1, 3, ..., k-2, f(p_i^{(1)}) = m(p_{i-1}^{(1)}, p_{i+1}^{(1)}), i = 2, 4, ..., k-1, and f(p_k^{(1)}) = M(p_{k-1}^{(1)}, p_{k+1}).$

Let $p_i^{(1)} = p_i$, i = k + 1, ..., n. Then, $p^{(1)} \in P$. We apply the same procedure to $p^{(1)}$ and obtain $p^{(2)}$. Continuing in this manner, in $r \le n$ iterations we obtain a required $p^{(r)} \in P \cap Q^*$. If k is even, we use a similar construction to find an element in $P \cap Q^*$. The proof is complete.

The proofs of the following main results depend on the nonemptiness of the sets $P \cap Q^*$, Q^* , and Q as shown in the above proposition. We denote by $C^{\infty} = C^{\infty}(I)$ the set of all infinitely differentiable functions on I.

THEOREM 3.1 (Best approximation from $K(p) \cap C$). Let $n \ge 2$, $p \in \Omega$ and $f \in C$.

(a) (Existence) Both \underline{g}_p , $\overline{g}_p \in K^*(p) \cap C$ if and only if $p \in Q$, and for such p, $\Delta(p) = \rho(f, K(p)) = \rho(f, K(p) \cap C)$.

(b) (Nonuniqueness) Suppose that $p \in Q^*$. Then $K^*(p) \cap C$ (and hence $K^*(p)$) is not a singleton if and only if $f \in C \setminus K(p)$.

(c) $(C^{\infty} \text{ approximation})$ If $p \in Q$ and $f \in C \setminus K(p)$, then there exists $g \in K^*(p) \cap C^{\infty}$, and hence, $\Delta(p) = \rho(f, K(p)) = \rho(f, K(p) \cap C^{\infty})$.

Proof. (a) By Theorem 2.2(b), \underline{g}_p and \overline{g}_p are in $K^*(p)$. As in [8, part I], we conclude that both $\underline{g}_p(x)$ and $\overline{g}_p(x)$ are continuous at $x \neq p_i$ for $1 \leq i \leq n-1$, right-continuous at p_i for $0 \leq i \leq n-1$, and left-continuous at p_n . Suppose that $p \in Q$. Then, using the definition of Q, it is easy to verify that $\underline{g}_p(p_i^-) = M(p_{i-1}, p_i) - \delta(p) = M(p_i, p_{i+1}) - \delta(p) = \underline{g}_p(p_i)$, for i odd. Also, $\underline{g}_p(p_i^-) = f(p_i) - \delta(p) = \underline{g}_p(p_i)$, for i even. Hence, $\underline{g}_p \in C$. Similarly, $\overline{g}_p \in C$. Conversely, if \underline{g}_p and $\overline{g}_p \in C$, then, using the definition of these functions and arguing as above at p_i , we conclude that $p \in Q$.

(b) By (a), if $K^*(p) \cap C$ is a singleton then $\underline{g}_p = \overline{g}_p$. Then, by the definition of Q^* we have $f(p_1) - \delta(p) = \underline{g}_p(p_1) = \overline{g}_p(p_1) = f(p_1) + \delta(p)$. This gives $\delta(p) = 0$ and $f \in K(p)$. The converse is obvious.

(c) This is established for n = 1 in [8, part I]. The proof for $n \ge 2$ is similar.

The proof is complete.

THEOREM 3.2 (Best Approximation from $K \cap C$). Let $n \ge 2$, $f \in C$, and $g \in K \cap C$.

(a) (Existence) Both \underline{g}_p , $\overline{g}_p \in K^* \cap C$ if and only if $p \in P \cap Q$. Also, $\Delta^* = \rho(f, K) = \rho(f, K \cap C)$.

(b) (Characterization) $g \in K^* \cap C$ if and only if $\underline{g}_p \leq g \leq \overline{g}_p$, where $p \in P$.

(c) (Nonuniqueness) $K^* \cap C$ (and hence K^*) is not a singleton if and only if $f \in C \setminus K$.

(d) (C^{∞} approximation) If $f \in C \setminus K$, then there exists $g \in K^* \cap C^{\infty}$. Hence, $\Delta^* = \rho(f, K) = \rho(f, K \cap C^{\infty})$.

Proof. (a) Clearly, $g_p, \tilde{g}_p \in K^* \cap C$ if and only if $g_p, \tilde{g}_p \in K^*(p) \cap C$, where $p \in P$. The result now follows from Theorem 3.1(a).

(b) As above, $g \in K^* \cap C$ if and only if $g \in K^*(p) \cap C$, where $p \in P$. The result then follows from Theorem 2.2(b).

(c) Suppose that $K^* \cap C$ is a singleton. Let $p \in P \cap Q^*$. Since $Q^* \subset Q$, by (a) $g_p, \bar{g}_p \in K^* \cap C$. Then $g_p, \bar{g}_p \in K^*(p) \cap C$. Since $K^* \cap C$ is a singleton, we have $g_p = \bar{g}_p$ and hence, $K^*(p) \cap C$ is a singleton. By Theorem 3.1(b), we conclude that $f \in K(p) \subset K$. The converse is obvious.

(d) This is established for n = 2 in [10] using methods of [8, part I]. The proof for $n \ge 2$ is similar.

The proof is complete.

References

- M. P. CULLINAN AND M. J. D. POWELL, Data smoothing by divided differences, *in* "Numerical Analysis" (A. Dold and B. Eckmann, Eds.), pp. 26–37, Lecture Notes in Mathematics, Vol. 912, Spring-Verlag, Berlin, 1982.
- 2. E. DEAK, Über konvexe und interne Funktionen, sowie eine gemeinsame Verallgemeinerung von beiden, Ann. Univ. Sci. Budapest. Eötvös Sect. Math 5 (1962), 109-154.
- 3. H. J. GREENBERG AND W. P. PIERSKALLA, A review of quasi-convex functions, *Oper. Res.* 19 (1971), 1553–1570.
- 4. I. P. NATANSON, "Theory of Functions of a Real Variable," Vol. 1, Ungar, New York, 1964.
- 5. J. PONSTEIN, Seven kinds of convexity, SIAM Rev. 9 (1967), 115-119.
- E. A. SEVASTIJANOV, Uniform approximation by piecewise monotone functions and some applications to φ-variations and Fourier Series, *Dokl. Akad. Nauk SSSR* 217 (1974), 27-30. [In Russian]
- 7. E. A. SEVASTUANOV, Piecewise monotone and rational approximation and uniform convergence of Fourier series, *Anal. Math.* 1 (1975), 183–195. [In Russian]
- 8. V. A. UBHAYA, Isotone optimization I, II, J. Approx. Theory 12 (1974), 146-159, 315-331.
- 9. V. A. UBHAYA, An O(n) algorithm for discrete n-point convex approximation with applications to continuous case, J. Math. Anal. Appl. 72 (1979), 338-354.
- 10. V. A. UBHAYA, Quasi-convex optimization, J. Math. Anal. Appl. 116 (1986), 439-449
- 11. V. A. UBHAYA, Optimal Lipschitzian selection operator in quasi-convex optimization, J. Math. Anal. Appl. 127 (1987), 72-79.
- V. A. UBHAYA, L_p approximation from nonconvex subsets of special classes of functions, J. Approx. Theory 57 (1989), 223-238.
- 13. S. E. WEINSTEIN AND Y. XU, Best quasi-convex uniform approximation, J. Math. Anal. Appl., in press.