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The problem considered is that of finding a best uniform approximation to a real
function f E C[a, b] from the class of piecewise monotone functions. The existence,
characterization, and nonuniqueness of best approximations are established.
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1. INTRODUCTION

Let I=[a,b] be a compact real interval and B==B(I) (resp. C=C(l))
be the Banach space of all bounded (resp. continuous) real functions f on
I with the uniform norm Ilfll = sup{ If(x)l:x E I}. For any integer n ~ 1, let

Q={P=(PO,Plo···,Pn)ERn+l:a=PO:(Pl:( ... :(Pn=b}.

Then, Q is compact in R"+l. Given a pEQ, define intervals Ij = [Pj-l, pJ,
for 1:(j:(n-1, and In=[Pn-l,PnJ. Let

K(p) = {h E B: ( -1 Yh is nonincreasing on I j , 1:( j:( n).

K(p) is called the set of all n-piecewise monotone functions with the knot
vector p. Some functions in K(p) have more than one knot vector. In
general, the set of all knot vectors for a given function in K( p) is a convex
subset of Q, as may be easily seen. Next, let K= U {K(p): PEQ}. We call
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K the set of n-piecewise monotone functions, or simply, the set of piecewise
monotone functions. We point out that several entities defined in this
article including K( p) and K depend on n although such dependence is
suppressed in their notation. Given I in C, a function g in E c B is called
a best approximation to I fromE if III - gil = inf{ III - hll: hE E}. In this
article, we consider the problem of finding a best approximation to I in C
from K(p), K, K(p) n C, and K n C.

In Section 2, we analyze some properties of K(p) and K, and establish
the existence and characterization of a best approximation to I in C from
these sets. In Section 3, we demonstrate the existence and nonuniqueness of
best approximations from K(p) n C and K n C. The latter obviously
implies the nonuniqueness of best approximations from K(p) and K.

If n = 1, the above problem is included in the best uniform monotone
approximation investigated in [8]. If n = 2, the problem is a slightly
restricted version of the best uniform quasi-convex approximation studied
in [10, 11, 13]. Quasi-convex functions are considered in [2, 3, 5]. A
slightly general concept of piecewise monotone functions is used in [12] to
establish the existence of a best L p approximation from various function
classes including quasi-convex, convex, n-convex, and star-shaped.
Additional references on piecewise monotone functions are [1,6, 7].

2. BEST ApPROXIMATION FROM K(p) AND K

In this section we establish some properties of K( p) and K, and also the
existence and characterization of best approximations from these sets.

Let IEB. For EcB, let p(j,E)=inf{ll/-hll: hEE}. Define LI(p)=
p(j,K(p», pEQ, and LI*=p(j,K). Then, LI*=inf{LI(p): PEQ}. We
denote by K*(p) (resp. K*) the set of all best approximations to I from
K(p) (resp.K). Let also P*={pEQ: LI(p)=LI*}. We call p* the set of
best knot vectors for piecewise monotone approximation to I; this
terminology is justified by Theorem 2.3(b) below. The left-hand and right
hand limits of h at x are denoted by h(x-) and h(x+), respectively.

THEOREM 2.1 (Existence of a best approximation from K and a best knot
vector). If lEe, then there exist p* E p* and g* E K(p*) n K*. Thus
p* =1= 0·

Prool (As in [9] or [12]). Let T(h) denote the total variation of a
function h on I. If hE K, then there exists q EQ such that hE K(q). We have,

n n

T(h) = L Ih(qn-h(qi-dl + L Ih(qn-h(qJI ~4nllhll·
i=l
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Now for each positive integer k, there exists hk EK such that 111- hkll ~
LI* + 11k. Hence, Ilhkll ~ IIIII + LI* + 1. Then hkEK(q(k)) and, by the above
result, T(h k ) ~ 4n Ilhkll ~ 4n( IIIII + LI *+ 1). By the compactness of Q and
Helly's selection theorem [4, p.222], there exist subsequences p(k) and gk
of q(k) and hb respectively, so that p(k) -> p* and gk -> g* pointwise. Then
III - g*11 ~LI*. Clearly, g* may not be in K(p*). We redefine g* at the
points Pi*' 1~ i ~ n -1, to equal its right-hand limits at these points. Then,
g* E K(p*) and, by the continuity of I we have III - g*11 = LI*. Thus
g*EK*. Also, LI*=LI(p*) and P*EP*. The proof is complete.

We now establish some properties of K(p) and K. A subset E of B is
called a cone if lEE implies that AI E E for all A?: O. It is easy to show that
a cone E is convex if and only if 1+ h EE whenever f, hE E. Note that if
n = 1, then Q = {p } and K = K( p), where p = (a, b). In the next proposition,
the topology under consideration is the one generated by the uniform
norm.

PROPOSITION 2.1. (a) For all pEQ and n?:1, K(p) and K(p)nC are
closed convex cones.

(b) For n = 1, K and K n C are closed convex cones. For n?: 2, K and
K n C are cones which are not convex, K is not closed, but K n C is closed.

Proof We first show that K n C is closed. Let hkEK n C and hE B with
Ilh - hkll -> 0 as k -> 00. Then, by uniform convergence, hE C. As in
Theorem 2.1, there exists a subsequence gk of hk with gkEK(p(k)) so that
gk -> g* pointwise and p(k) -> p*. Then h = g* and, by continuity,
hE K(p*). Hence hE K n C and K n C is closed.

We now show that K is not closed for n?: 2; it suffices to do so for n = 2.
Let n=2, 1= [-1,1], l(x)=O for -1 ~x~O, and =1-x for o<x~ 1.
Clearly, IE B\K. Let q(k) = (-1, 11k, 1), k?: 2. Define Ik(X) = 0 for
-1 ~ x ~ 0, = 1 for °< x < 11k, and = 1 - x for 11k ~ x ~ 1. Then
Ik EK(q(k)) C K, and III - Ikll = 11k -> 0 as k -> 00. Hence I is in the closure
of K. Thus K is not closed.

The remaining assertions may be established directly from the definitions
by elementary methods. The proof is complete.

We note that the cone of quasi-convex functions considered in
[10, 11, 131 is closed and contains the cone K for n = 2, and the latter is
not closed as shown above.

Let IE B. If a ~ x ~ Y ~ band 1~ k ~ n, define

640/63/3-8

Fk(x, y) = (f(x) - l(y))/2,

= (f(y)- l(x))/2,

kodd,

k even.
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For any interval J c I, let dk(J) = sup{Fk(x, y): x, y E J, x::::; y}. Note that,
when k is odd (resp. even), dk(J) is a measure of the extent by which f fails
to be nondecreasing (resp. nonincreasing) on J. For p E Q, let J(p) =
max{dk(h): l::::;k::::;n}. Let also J*=inf{b(p): PEQ} and P={pEQ:
J(p)=J*}, the subset of Q on which J attains its minimum.

PROPOSITION 2.2. Let fEB.

(a) J(p)=O for some pEQ if and only if fEK(p).

(b) If f E K then J* = O.

(c) If fEe then J(p) is a continuous function of p E Q. Hence, J* = 0
if and only if fEKn C.

Proof (a) This follows directly from the definition of K(p).

(b) IffE K then f E K(p) for some PE Q and J(p) = O. Hence J* =O.

(c) For pEQ, let Ilpll denote the Euclidean norm. Let 8>0. Since
fEe, there exists p > 0 such that If(x) - f(y)1 < 8 whenever Ix - yl < p.
Let p, qEQ with IIp-qll <po Then IPk-qkl <p for all O::::;k::::;n. Hence, if
h = [Pk- 1> Pk) and Jk = [qk-l, qd, then we have Idk(h) - dk(Jk)I ::::; 8, as
may be easily shown. Hence, IJ(p)-J(q)I::::;8 and J is continuous. Now, if
J* = 0 then there exists p with J* = J(p) = O. Then f E K(p) c K. The proof
is complete.

The example of Proposition 2.1 also illustrates that, in general, the
continuity condition of f in Theorem 2.1 cannot be dropped and the
converse of Proposition 2.2(b) is not true. For f defined in the proof of
Proposition 2.1, LI *= 0 and a best approximation from K does not exist.
Also, J(q(k J) ~ 0 as k ~ 00. Hence J* = 0 but f E B\K.

For p E Qn and 1 ::::;j::::; n, define $p, gp in K by

and

$p(x) = sup {f(y): Pj-l::::; y::::;x} -J(p), xElj ,

=sup{f(y): x::::; y::::;pJ -J(p), xElj ,

gp(x) = inf{f(y): x::::; y::::; pJ + J(p), x E I j ,

= inf{f(y): Pj-l::::; y::::; x} + J(p), XE I j ,

jodd

j even,

jodd,

jeven.

THEOREM 2.2 (Best Approximation from K( p». Let p E Q, fEB and
g E K(p). Then the following holds.

(a) (Duality) LI(p) = J(p).

(b) (Existence and characterization) Both $p, gp E K*(p) with $p::::; gpo

Furthermore, g E K*(p) if and only if $p::::; g::::; gpo



PIECEWISE MONOTONE APPROXIMATION 379

Proof Applying [8, part I, Theorem 2.1] with w identically equal to 1
to each interval I j we obtain the required results. The arguments given
there hold even if some of the intervals are half-open. The maximum of 8's
for all intervals gives fJ(p). The proof is complete.

THEOREM 2.3 (Best Approximation from K). Let f E C and g E K. Then
the following holds.

(a) (Duality) L1* = fJ*.

(b) (Optimal knots) p* = P= {pE.o: K(p) n K* # 0} # 0.
(c) (Characterization) g E K* if and only if there exists apE P sud

that gp ~ g~ gpo (Both gp and gp are in K*.) Consequently,
K* = 0 {[~p, gp]: pEP}, where [~, gp] denotes the "function interval"
{gEK: ~p~g~gp}.

Proof (a) and (b) By Theorem 2.2(a), for each p f;.o, L1 (p) = fJ( p).
Hence, L1* = fJ* and p* = P. There latter is nonempty by Theorem 2.1.
Now, by the definition of P*, we have P*=:;{pE.o: K(p)nK*#0}. If
p E P*, then, by Theorem 2.2(b), there exists a best approximation g to f
from K(p) with Ilf - gil = L1(p) = L1*. Hence, g E K* and (b) is established.

(c) Note that g E K* if and only if g f; K*(p), where p E p* = P. The
result now follows from Theorem 2.2(b ).

The proof is complete.

3. BEST ApPROXIMATION FROM K(p) n C AND K n C

in this section we obtain the existence, characterization, and nonunique
ness of best approximations from K(p) n C and K n C.

We first define some notation. Let f E C. For 0 ~ x ~ y ~ 1, let
m(x, y) = min{J(z): x ~z ~ y} and M(x, y) = max {J(z): x ~z~ y}. By
the continuity of J, for any (open, half-open, or closed) nonempty subinter
val J of I with endpoints x, y, we have dk ( J) = dk ( [x, y]), for all 1~ k ~ n.
For convenience, in the rest of the exposition, we denote dk( [x, y]) by
dk(x, y). We now establish two basic results.

LEMMA 3.1. Let f E C, PEP, and k be a fixed integer with 1 ~ k ~ n - 1.

(a) Let p~l)E [Pk-l, Pk+l] such that f(p~l))=M(Pk_l' pk+d for
odd k, and f(p~I))=m(Pk_l' PHd for even k. Then, dk(Pk-l, p~I))~b*
and dk+l(p~I), Pk+ 1) ~ fJ*.

(b) Let p~l)E [Pb PHI] such that the following (i) and (ii) hold.
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(i) for odd k, f(pil») = M(Pk-j, Pk+d, m(Pk,pil»)<f(Pk-d=
m(Pk-2' Pk), and pi12 l =inf{zE [Pk> pill]: f(z)=m(pk> pi!))},

(ii) for even k, f(pil»)=m(Pk_l' pk+d, m(pk> pil»)<f(Pk_d=
M(Pk-2' Pk), ~ndp}/2l = inf{z E [Pk> pi!)]: f(z) = M(Pk, pi!))}·

Then, dk(pi12l,pil»)~b* anddk_l(Pk_2,pi12d~b*.

Proof (a) We present only the proof for odd k. If pill = Pk> then the
result holds by the definition of dk. If pi!) < Pk> then dk(Pk-l, pill) ~
dk(Pk-j,Pk)~J*. Assume dk+l(pil),Pk+d>J*. Then, there exist two
points x < y in [pi!), Pk+ lJ such that f(y) - f(x) > 2b*. If pill ~ X ~ Pk,
then we have,

which is a contradiction. Similarly, if Pk<x~Pk+j, then dk+l(Pk> Pk+l)
~ (/(y) - f(x))j2 > J*, a contradiction. The case pill > Pk can be handled
similarly to obtain a contradiction.

(b) We prove this result only for odd k. Since pi12 l E [Pk> pill], by
(a),

Also,

dk- l(Pk-2, pi12 l )

~max{dk_l(Pk_2' Pk-d, dk-l(Pk-j, pi12 l ),

sup{ (/(y) - f(x))j2: Pk-2 ~ x ~ Pk- j, Pk-l ~ Y ~ pi12 l }}·

But

dk-l(Pk-l, pi12 l )~ (M(Pk-l' pi12 l ) - f(pi12 l ))j2

~ (f(pil») - f(pi12 l ))j2 ~ dk-l(Pk, Pk+ d ~ b*,

and

sup{ (f(y) - f(x))/2: Pk-2 ~ x ~ Pk- j, Pk-l ~ Y ~ pi12 l }

~ (M(Pk-l' pi12 l ) - f(Pk- d)/2 ~ (M(Pk_ j, pr2 l ) - !(pr2 l ))j2 ~ b*,

as shown above. Hence, dk- l(Pk-2, pi12l )~ b*. The proof is complete.
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Define subsets Q and Q* of Q by
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Q = {p E Q: M(Pi:: b pJ = M(Pi, Pi+ d,

m(pi_ , pJ = m(Ph Pi+ d,

Q* = {pEQ:f(pJ=M(Pi-l, pi+d,

f(p;)=m(Pi-l, Pi+l),

iodd,and

i even, where 1~ i ~ n - 1},

iodd,and

i even, where 1~ i~ n - 1}.

Clearly, Q* c Q. We call Q* the set of alternant local extremal points of f
These sets play an important role in the analysis. The proof of the
following proposition provides an iterative procedure for constructing a
best knot vector in Q* from a given initial best knot vector.

PROPOSITION 3.1. Let f E C. Then p* n Q* i= 0, and consequently,
Q::J Q* i= 0.

Proof By Theorem 2.2 (b), p* = P i= 0. Let pEP. Also, let k be the
smallest index such that f( Pk) does not assume, on [pk __ 1, Pk+ 1], its local
maximum for odd k or local minimum for even k, where 1~ k ~ n - 1. We
first consider the case when k is odd. Find pj))E LPk- 1> Pk+ 1] such that
f(p~1))=M(Pk_l'Pk+l) and replace Pk by p~I). Ifk= 1 then letp~)= Po.
Now suppose that k~3. If f(Pk_d=m(Pk_2,P~IJ), then let pj!J=
i=O, 1, ..., k-1. Otherwise we deduce Pk< p~J) and m(Pb p~l)) <f(Pk-d.
Let

and replace Pk-l by Pj)~I' By Lemma 3.1, we have dk- 1(Pk-2, p~I~I)~
£5*, dk(P~I~I,P~l))~£5*, and dk+1(P~l),Pk+d~£5*. Also, we have
f(p~I~1)=m(Pk_2,P~I)) and f(p;}))=M(p~l~l'Pk+l)' If f(Pk-Z)=
M(Pk-3' p~1~d, then let p~l)= Ph i=O, 1, ..., k-2. Otherwise we deduce
that Pk-l < p~l~ 1 and M(Pk_l' p~l~ d > f(Pk-Z)' and let

(1) _. f{ [ (1) ]'f( )-M( (1) )}Pk_Z- lll ZE Pk-l,Pk-l' Z - Pk~l,Pk-l'

Replace Pk-z by p~1~Z' Thus, dk- Z(Pk-3, p~l~z)~£5*, dk_l(P~l~Z' p~l~l)

~<5*, dk(P~1~ l' p~l)) ~£5*, and dk+1(P))), Pk+ d ~ £5*, with f(p~ll_z) =
M(Pk-3' p;}~ 1)' f(p~l~ 1) = m(p~l~z, pD, and f(p~I»)= M(p~1~ l' Pk+ I)'

By repeating this procedure, we obtain p~I~3' ..., p~l),p~l) such that

(a) (p~l), p~l), ..., p~J), Pk+ 1, ... , Pn) E P, with p~lJ = Po,

(b) f(p~J))=M(p~~I,P~~d,i= 1, 3, ..., k-2,.f(p~l))=m(p~~\,P~~I)'
i = 2,4, ..., k - 1, and f(p~1»)= M(p~l~ l' Pk+ I)'

640/63/3-9
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Let p~l) = Pi' i = k + 1, ..., n. Then, p(1) E P. We apply the same procedure
to p(1) and obtain p(2 J• Continuing in this manner, in r ~ n iterations we
obtain a required p(r) E P n Q*. If k is even, we use a similar construction
to find an element in P n Q*. The proof is complete.

The proofs of the following main results depend on the nonemptiness of
the sets P n Q*, Q*, and Q as shown in the above proposition. We denote
by Coo = coo(I) the set of all infinitely differentiable functions on I

THEOREM 3.1 (Best approximation from K( p) n C). Let n ~ 2, p E Q and
fEe.

(a) (Existence) Both gp, gpEK*(p)n C if and only if pEQ, andfor
such p, A(p) = p(f, K(p));; p(f, K(p) n C).

(b) (Nonuniqueness) Suppose that p E Q*. Then K *(p ) n C (and
hence K*(p)) is not a singleton if and only if fEC\K(p).

(c) (COO approximation) If p EQ and f E C\K(p), then there exists
g EK*(p) n Coo, and hence, A(p) = p(f, K(p)) = p(f, K(p) n COO).

Proof (a) By Theorem 2.2(b), gp and gp are in K*(p). As in [8,
part I], we conclude that both gp(x) and gp(x) are continuous at x i= Pi for
1~ i ~ n - 1, right-continuous at Pi for 0 ~ i~ n - 1, and left-continuous at
Pn' Suppose that p E Q. Then, using the definition of Q, it is easy to verify
that ~P(Pi-) = M(Pi_l, Pi) -15(p) = M(Pi' Pi+ I) -15(p) = ~p(pJ, for i odd.
Also, ~p(p;)=f(pJ-I5(p)=~ApJ, for i even. Hence, ~pEe. Similarly,
gp E e. Conversely, if ~p and gp E C, then, using the definition of these
functions and arguing as above at Pi' we conclude that p E Q.

(b) By (a), if K*(p)nC is a singleton then gp=gp. Then, by the
definition of Q* we have f(PI)-I5(p)=~P(PI)=gp(pd=f(pd+l5(p),
This gives l5(p) = 0 and f E K(p). The converse is obvious.

(c) This is established for n = 1 in [8, part I]. The proof for n ~ 2 is
similar.

The proof is complete.

THEOREM 3.2 (Best Approximation from K n C). Let n ~ 2, f E C, and
gEKnC.

(a) (Existence) Both gp, gpEK*nC if and only if pEPnQ. Also,
A* = p(f, K) = p(f, K n C). -

(b) (Characterization) g E K* n C if and only if gp ~ g ~ gp, where
PE~ -

(c) (Nonuniqueness) K* n C (and hence K*) is not a singleton if and
only if f E C\K.
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(d) (COO approximation) If f EC\K, then there exists g EK *n eX).
Hence, A*= p(f, K) = p(f, K n COO).

Proof (a) Clearly, gp, gpEK*nC if and only if gp, gpEK*(p)n
where pEP. The result now follows from Theorem 3.1(a).

(b) As above, g E K* n C if and only if g E K*(p) n C, where pEP.
The result then follows from Theorem 2.2(b ).

(c) Suppose that K*nC is a singleton. Let pEPnQ*. Since
Q* c Q, by (a) ¥p, gp E K* n C. Then ¥p, gp E K*(p) n C. Since K* n C is
a singleton, we have ¥p = gp and hence, K*(p) n C is a singleton. By
Theorem 3.1 (b), we conclude that f E K( p) c K. The converse is obvious.

(d) This is established for n = 2 in [1OJ using methods of [8, part I],
The proof for n~ 2 is similar.

The proof is complete.
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